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SUMMARY

We have conducted the linear stability analysis of �ow in a channel with periodically grooved parts
by using the spectral element method. The channel is composed of parallel plates with rectangular
grooves on one side in a streamwise direction. The �ow �eld is assumed to be two-dimensional and
fully developed. At a relatively small Reynolds number, the �ow is in a steady-state, whereas a self-
sustained oscillatory �ow occurs at a critical Reynolds number as a result of Hopf bifurcation due to
an oscillatory instability mode. In order to evaluate the critical Reynolds number, the linear stability
theory is applied to the complex laminar �ow in the periodically grooved channel by constituting the
generalized eigenvalue problem of matrix form using a penalty-function method. The critical Reynolds
number can be determined by the sign of a linear growth rate of the eigenvalues. It is found that the
bifurcation occurs due to the oscillatory instability mode which has a period two times as long as the
channel period. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A complex laminar �ow in streamwise periodically grooved channels is often encountered
in engineering practice, mostly in plate-type compact heat exchangers or cooling systems of
micro scale electronic components. Spatially periodic disturbance promoters such as �ns or
grooves extend heating surface areas, increase �uid mixing and interrupt the development of
the thermal boundary layer, leading to enhancement of heat transfer. Therefore, much research
has been carried out until now both experimentally and numerically.
Several experiments of �ow visualization for the channels with rectangular grooves or

rectangular �ns showed that at the entrance region two or three grooves are required for
the �ow to become a fully developed �ow state, where the velocity pro�le repeats itself
from groove to groove [1–3]. Namely, the in�uence of the entrance region can be neglected
after two or three grooves, if the channels are su�ciently long and have many grooves.
Furthermore, it was shown that the �ow is in a two-dimensional steady-state for a relatively
small Reynolds number and it becomes a two-dimensional self-sustained oscillatory �ow by
undergoing a bifurcation at a certain critical Reynolds number.
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In a numerical study, the channels are often divided into identical modules in the streamwise
direction assuming that the fully developed velocity �eld repeats itself in a cyclic manner.
This enables us to con�ne the calculation domain to cover only one of these modules without
dealing with the entrance region. Such a procedure was �rst suggested by Patankar et al. [4]
and was applied to a con�guration consisting of successive ranks of isothermal plate segments
placed transverse to the main �ow direction under steady-state conditions. In a channel with
rectangular grooves on one side of plates, Sunden and Trollheden [5] studied the laminar
convective �ow and heat transfer under two-dimensional steady-state conditions. Ghadder
et al. [6] and Pereira and Sousa [7] carried out numerical simulation of the two-dimensional
time-dependent Navier–Stokes equation and found that the steady-state �ow becomes periodic
in time, that is to say, it becomes a self-sustained oscillatory �ow at the critical Reynolds
number. A wave is generated for the self-sustained �ow and this wave is identi�ed as the
Tollmien–Schlichting wave. Recently, Adachi and Uehara [8] studied the transitions of �ow
in �ve di�erent kinds of channel geometry with rectangular grooves, and obtained the critical
Reynolds numbers. Furthermore, Amon [9] presented direct numerical simulation of two-
and three-dimensional �ows in a periodically grooved channel and showed that the two-
dimensional steady �ow is stable in regard to any three-dimensional in�nitesimal perturbation
up to the critical Reynolds number where a two-dimensional, self-sustained oscillatory �ow
occurs. That is to say, the bifurcation phenomenon is generated in the two-dimensional region.
As mentioned previously, the bifurcation from the steady-state �ow to the oscillatory �ow

has been investigated by numerical simulation. On the other hand, as a representative method
to �nd the critical condition of the bifurcation, there is a method which constitutes an eigen-
value problem based on the linear stability theory. The theory of stability has been applied
to simple parallel �ows whose velocity distributions depend only upon a space variable and
has been devoted to solving the Orr-Sommerfeld equation [10]. Two-dimensional and axis-
symmetric �ows including a plane Poiseuille �ow, Blasius boundary layer, free mixing layers,
jet and wake belong to the category of simple �ows. However, those �ows that have more
complex velocity distributions have been left untouched since semi-analytical methods which
were useful for the simple �ows become di�cult for the complex �ows and cannot consti-
tute the eigenvalue problem for complex �ows applying the linear stability theory. Thanks
to recent progress in high-speed computation technology, numerical analysis of the stability
problem for simple but non-parallel �ows has gradually become available.
In this paper, we investigate the linear stability of the complex laminar �ow in a periodically

grooved channel. The linear stability theory is applied to the complex �ow by using the
spectral element method. The generalized eigenvalue problem of matrix form is constituted
based on the linear stability theory. We evaluate the critical Reynolds number where the two-
dimensional steady �ow bifurcates to the two-dimensional self-sustained oscillatory �ow, and
also clarify the hydrodynamic nature of instability.

2. MATHEMATICAL FORMULATION

2.1. Basic equation

We consider a parallel plate channel which consists of streamwise periodic modules with rect-
angular expanded grooves on one side as shown in Figure 1(a). Figure 1(b) is an
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Figure 1. Geometry and co-ordinate: (a) periodically grooved channel; (b) one of the periodic modules.

enlargement of part A shown in Figure 1(a) which is one of the periodic modules and
indicates the geometric quantities that de�ne its shape. The x-axis is taken in the �ow di-
rection and the y-axis is perpendicular to it with the origin O as shown in Figure 1(b). As
non-dimensional parameters to characterize the channel con�guration, period L, width l of the
groove, and height a of the groove from the centerline between the parallel plates are de�ned
as

L=
L∗

h∗
; l=

l∗

h∗
; a=

a∗

h∗
(1)

where h∗ is the representative length and we represent physical quantities with their dimensions
by attaching a superscript * to them. The channel consists of parallel plates without grooves
for a=1.
The �ow is assumed to be two-dimensional and incompressible. Then, the velocity u=(u; v)

and the pressure p of the �ow are governed by the continuity and Navier–Stokes equations
as

∇ · u= 0 (2)

@u
@t
+ (u · ∇)u=−∇p+ 1

Re
∇2u (3)

where length has been made dimensionless with the half height of the channel h∗, velocities
with U ∗=3U ∗

m=2 (U
∗
m is the mean velocity at the cross section of height 2h

∗) and time with
U ∗=h∗. The Reynolds number is de�ned as Re=U ∗h∗=�∗, where �∗ is the kinematic viscosity.
We assume that the velocity is zero on the plates and adopt the case that the �ow rate is

�xed in time. Thus, the imposed �ow rate 2U ∗
mh

∗ is constant and its nondimensional value is
4=3 in this case. The boundary conditions on the plates are given as

u(x; t)=0 (4)

After a short entrance region, the �ow is expected to attain a periodic fully developed regime.
Thus, the following periodic boundary conditions are imposed as

u(x +mL; y; t)= u(x; y; t) (5)
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where m is an integer periodicity index. In this study, we adopt m=1 and 2, while m is taken
as m=1 in many other previous studies [5–9].
For the pressure, we require

p=−�x + p̃ (6)

p̃(x +mL; y; t) = p̃(x; y; t) (7)

where the term �=�(t) is the driving force for the �ow, and is determined by the imposed
constant �ow-rate condition as ∫ 1

−1
u(x=0; y; t) dy=

4
3

(8)

In order to simplify the mathematical formulation, we introduce a penalty-function method
[11, 12], where the divergence-free condition of Equation (2) is reduced to express a limiting
state in which the divergence of the velocity is not zero but extremely small. Then, the
pressure p̃ is replaced as

p̃=−�
(
@u
@x
+
@v
@y

)
(9)

where � is a penalty number of order O(108). Substituting Equation (9) into Equation (3),
we can eliminate p̃ and obtain the basic equations as

@u
@t
+ u

@u
@x
+ v

@u
@y
= �+ �

@
@x

(
@u
@x
+
@v
@y

)
+
1
Re

(
@2u
@x2

+
@2u
@y2

)
(10)

@v
@t
+ u

@v
@x
+ v

@v
@y
= �

@
@y

(
@u
@x
+
@v
@y

)
+
1
Re

(
@2v
@x2

+
@2v
@y2

)
(11)

2.2. Steady state equation

The �ow is expected to attain its steady-state after enough time at a relatively low Reynolds
number. The non-linear steady-state solution ( �U (x; y); �V (x; y); ��) is calculated directly from
the steady-state equations which are obtained by dropping the terms including the operator
@=@t in Equations (10) and (11) as

�U
@ �U
@x
+ �V

@ �U
@y

= ��+ �
@
@x

(
@ �U
@x
+
@ �V
@y

)
+
1
Re

(
@2 �U
@x2

+
@2 �U
@y2

)
(12)

�U
@ �V
@x
+ �V

@ �V
@y
= �

@
@y

(
@ �U
@x
+
@ �V
@y

)
+
1
Re

(
@2 �V
@x2

+
@2 �V
@y2

)
(13)

The boundary conditions for ( �U (x; y); �V (x; y)) on the plates are given by

�U = �V =0: (14)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:601–613



STABILITY OF FLOW IN A PERIODICALLY GROOVED CHANNEL 605

Those for the periodicity are written as

�U (x +mL; y)= �U (x; y); �V (x +mL; y)= �V (x; y) (15)

In addition to these conditions, the constant �ow-rate condition is imposed as∫ 1

−1
�U (x=0; y) dy=

4
3

(16)

2.3. Disturbance equation

All the steady-state solutions obtained from Equations (12) and (13) are not stable. We
investigate the linear stability of the steady solutions by adding perturbation to them and
observing the time dependence for the perturbation. Thus, we consider a perturbation added
to the steady solution. Then, the velocity and pressure gradient are expressed as the sum of
the steady solution ( �U (x; y); �V (x; y); ��) and the disturbance (û(x; y; t); v̂(x; y; t); �̂(t)) as

u= �U + û; v= �V + v̂; �= ��+ �̂ (17)

The disturbance is assumed to have the time dependence expressed as

û= u′ exp(�t); v̂= v′ exp(�t); �̂=�′ exp(�t) (18)

where � in Equation (18) is a complex number, and the real part Re[�] and the imaginary
part Im[�] denote the linear growth rate and the frequency of the disturbance, respectively.
The steady solution is unstable if Re[�]¿0 and the disturbance grows with time. There are
two types of instability, as follows. One is that the steady solution is unstable in regard to
a stationary disturbance and it bifurcates to another steady solution if Im[�]= 0 when Re[�]
vanishes. Such a transition is classi�ed into a pitchfork, saddle-node or transcritical bifurcation
by the bifurcation theory. The other is that the steady solution is unstable in regard to an oscil-
latory disturbance and it bifurcates to a periodic solution with a frequency of �= Im[�]=(2�)
if Im[�] �= 0 when Re[�] vanishes. Such a transition is called a Hopf bifurcation.
Substituting Equation (18) into Equations (10) and (11), then subtracting the steady-state

equations from the resultant equations and dropping the nonlinear terms of the disturbance
(u′(x; y); v′(x; y); �′), we obtain the following linearized equations for the disturbance as

�u′ =− �U
@u′

@x
− u′ @

�U
@x

− �V
@u′

@y
− v′ @

�U
@y

+ �′ + �
@
@x

(
@u′

@x
+
@v′

@y

)

+
1
Re

(
@2u′

@x2
+
@2u′

@y2

)
(19)

�v′ =− �U
@v′

@x
− u′ @

�V
@x

− �V
@v′

@y
− v′ @

�V
@y
+ �

@
@y

(
@u′

@x
+
@v′

@y

)
+
1
Re

(
@2v′

@x2
+
@2v′

@y2

)
(20)

The boundary conditions for (u′(x; y); v′(x; y)) are the same as Equations (14) and (15) for
( �U (x; y); �V (x; y)). The �ow-rate condition for the disturbance is imposed as∫ 1

−1
u′(x=0; y) dy=0 (21)
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3. NUMERICAL METHOD

The numerical calculations are carried out by utilizing the spectral element method [13–15].
In the spectral element method, the actual solution domain is broken up into K elements and
each element is mapped from the physical (x; y) space to the local ( �x; �y) co-ordinate system
whose ranges are [−1; 1]. The velocity is expanded by high-order Lagrangian interpolants
through Gauss–Lobatto–Chebyshev collocation points, de�ned as



�Uk( �x; �y)
�V k( �x; �y)

u′k( �x; �y)

v′k( �x; �y)


 =

N∑
m=0

N∑
n=0



�Uk
mn

�V kmn
u′kmn
v′kmn


 hm( �x)hn( �y); (k=1; 2; : : : ; K) (22)

where the interpolants are expressed as

hi( ��)=
2
N

N∑
n=0

1
�cj �cn

Tn( ��j)Tn( ��)

�cl=

{
1; l �= 0; N
2; l=0; N

(23)

where the Tn are the nth order Chebyshev polynomials and i=m; n and ��= �x; �y. The Gauss–
Lobatto points are de�ned as

��j= cos
�j
N
; j=0; 1; : : : ; N (24)

Substituting the expansions of Equation (22) into the weak forms of the steady-state and
disturbance equations and also using the Galerkin method, we obtain a set of algebraic equa-
tions for the coe�cients of the expansions. To construct the system matrix from the element
matrices, the direct sti�ness method is used [11]. The set of algebraic equations for the steady
solution are solved numerically by the Newton–Raphson method. On the other hand, the set of
algebraic equations for the stability of the steady solution constitutes a generalized eigenvalue
problem in a matrix form as

Aa=�Ba (25)

where a is a vector of expansion coe�cients, and A and B are the matrices arising from the
right-hand side and left-hand side of Equations (19) and (20), respectively. The eigenvalue
�, with maximum real part, determines the stability characteristics of the steady solution and
the corresponding eigenvector represents the �ow �elds of the disturbance. The eigenvalue
problem is solved numerically by a QR method using a standard package contributed from
EISPACK. On the other hand, for the cases of large scale eigenvalue problems, a computation
of all eigenvalues would be prohibitive. In such cases, Arnoldi’s method or simultaneous in-
verse iteration method are often used to reduce the size of matrix and to �nd a few eigenvalues
[16–18].
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4. RESULTS

We have conducted numerical calculations for the geometry of parameters L=6:6666,
l=2:2222 and a=2:1111 which corresponds to the same channel that Ghadder et al. [6]
and Pereira and Sousa [7] investigated.

4.1. Numerical check

First, we check the numerical accuracy. All the calculations are made by double precision. The
pressure gradient ratio and eigenvalues for m=1 at Re=525 are calculated for the truncation
parameters N =14; 16; 18 and 20, and tabulated in Table I, where the eigenvalues are depicted
up to the third unstable mode. The �rst and the second eigenvalues are real numbers and the
third one is a complex number. It is found that N =18 is enough to obtain three to four
signi�cant digits. So, the values of the truncation parameter are hereafter taken as N =18.
The computational domain and a typical spectral mesh for N =18 are shown in Figure 2 for
both m=1 and 2, respectively.
In addition to the convergence, the eigenvalue of the third unstable mode should be com-

pared with the result of Ghadder et al. [6]. They obtained the linear growth rate and fre-
quency from numerical simulation of the initial-value problem of the linearized disturbance
equation to the Navier–Stokes equations. Our result is in good agreement with that of Ghadder
et al. [6].

4.2. Steady state solution

The streamlines of the steady-state �ow at Re=50, 525 and 1000 are depicted in Figure 3
for both m=1 and 2. The �ow is from left to right. The contour levels for the �ow �eld

Table I. Convergence of the pressure gradient and eigenvalues for m=1 at Re=525. �1; �2 and �3 are
eigenvalues for the most unstable, second unstable and third unstable modes, respectively.

N �=�p �1 �2 �3

14 0.9724 −0:01852 −0:03780 (−0:03905, 0.1424)
16 0.9726 −0:01853 −0:03782 (−0:03944, 0.1427)
18 0.9726 −0:01853 −0:03783 (−0:04010, 0.1425)
20 0.9725 −0:01854 −0:03784 (−0:03996, 0.1424)
Ghadder et al. [6] — — — (−0:043, 0.142)

Figure 2. A plot of the spectral element mesh. The �lled circles represent the Chebyshev grid points.
The thin solid lines correspond to the spectral element boundaries. (a) Channel for m=1. The amount

of the elements is K =4. (b) Channel for m=2. The amount of the elements is K =7.
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Figure 3. Streamlines of steady-state solution. (a) Re=50, (b) Re=525, (c) Re=1000.

have been chosen to detail the recirculating region. The �ow is periodically fully developed
and has the same period L as the module, say m=1, independent of the fact of whether
m is 1 or 2. A vortical �ow motion can be seen in the groove for Re=50 and the main
�ow de�ects into the groove. A shear layer between the main �ow and the �ow inside the
groove is established, which is indicated by the streamline separating from the wall. The
center of the vortex moves downstream as the Reynolds number increases. The main �ows at
Re=525 and 1000 are straight without de�ection and become almost parallel, similar to the
pro�le of a plane Poiseuille �ow in a parallel plate channel. These results are similar to some
previous studies and the qualitative behavior, such as the vortical �ow motion and the forma-
tion of the shear layer at the groove edge shown here, agrees well with the results of these
studies [1–9].
Furthermore, we de�ne the quantity �=�p to be the ratio of the pressure gradient � to the

corresponding quantity for the plane Poiseuille �ow (i.e. no groove) 2=Re, and show it in
Figure 4 against the Reynolds number together with the result of Ghadder et al. [6]. It is
found that the pressure drop ratio is less than unity, showing that the pressure drop is less
than the corresponding quantity for the plane Poiseuille �ow for the speci�ed �ow rate of
Equation (8). This is mainly because friction is decreased at the shear layer between the
main �ow and the �ow inside the groove. As shown in a later section, when the Reynolds
number undergoes a critical value, the steady-state �ow becomes unstable for in�nitesimal
disturbances and bifurcates to a time-periodic, self-sustained oscillatory �ow. The oscillatory
�ow induces a Reynolds stress responsible for the increase in momentum di�usion, which
converts energy from the main �ow to the oscillatory �ow and sustains it. As the result,
the pressure drop of the main �ow may increase with the occurrence of the oscillatory �ow.
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Figure 5. The linear growth rate and frequency. (a) Linear growth rate �r .
(b) Frequency � for the oscillatory disturbance.

Ghadder et al. [6] obtained the pressure gradient ratio under unsteady condition and showed
that the ratio linearly increases after the bifurcation as shown in Figure 4.

4.3. Linear stability

Now we investigate the linear stability of the steady solutions and plot the dependence of
the linear growth rate �r and frequency � of the oscillatory instability mode on Reynolds
number Re in Figure 5, where the linear growth rate is depicted up to the fourth unstable
mode. Among the disturbance modes, two are stationary modes which are indicated by S1
and S2, and the other two are oscillatory ones which are indicated by O1 and O2. S1, S2
and O1 are the modes of m=1, while O2 is that of m=2.
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Table II. Critical Reynolds numbers and frequencies.

Rec �c

m=1
Present result O1 (m=1) 1092 0.1314
Ghadder et al. [6] 975 0.141
Pereira and Sousa [7] 1030 0.131
m=2
Present result O2 (m=2) 1016 0.09416

Figure 6. The disturbance streamlines at the criticality Rec = 1092 for O1(m=1) mode. (a) Real part
of the disturbance. (b) Imaginary part of the disturbance.

At Re=525, the most unstable mode is a stationary instability mode, although Ghadder
et al. [6] and Pereira and Sousa [7] obtained the linear growth rate of the oscillatory mode
at the same Reynolds number. They carried out numerical simulation to the time-dependent
Navier–Stokes equations using as an initial condition the exact eigenfunction for the most
unstable Orr-Sommerfeld mode in the parallel plate channel, and obtained the growth rate
and frequencies from the time history of the perturbation velocity at a representative point.
Their results coincide with our result for O1 of m=1 in the growth rates and frequencies as
shown in Figure 5.
As the Reynolds number increases, the linear growth rates for the oscillatory modes increase

and become the most unstable and the second unstable modes after Re∼ 800, and the sign of
the growth rate changes from a negative value to a positive one. Then, the critical Reynolds
number is obtained for the oscillatory mode, where the Hopf bifurcation occurs. The critical
Reynolds numbers and the corresponding frequencies for the O1 and O2 modes are tabulated
in Table II together with the results of Ghadder et al. [6] and Pereira and Sousa [7]. The
critical Reynolds number for O1 of the present study is slightly larger than the other results,
while the corresponding frequency shows good agreement with the result of Pereira and Sousa
[7]. However, it should be noted that the critical Reynolds number Rec = 1016 for m=2 is
smaller than Rec = 1092 for m=1. Thus we can conclude that the critical mode is given by
m=2, and the critical Reynolds number is Rec = 1016.
To determine the nature of the hydrodynamic instability, we plot the disturbance streamlines

for the O1 and O2 modes at criticality Rec in Figures 6 and 7, which correspond to the real
and imaginary parts of the eigenvector of each mode. In the disturbance streamlines, there
are two pairs of vortices which span L in the disturbance �eld of the m=1 mode as shown
in Figure 6, while there are three pairs of vortices which span 2L of the channel in the
disturbance �eld of m=2 as shown in Figure 7. It is evident that the vortices which become
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Figure 7. The disturbance streamlines at the criticality Rec = 1016 for O2(m=2) mode. (a) Real part
of the disturbance. (b) Imaginary part of the disturbance.

a pair of the odd number cannot appear in the channel as m=1. However, as we have seen,
the mode of m=2 gives the critical Reynolds number. This indicates that the calculation
should be carried out as m=2 in such a channel with the periodic grooves, although such a
phenomenon is greatly dependent on the channel geometry.
As mentioned in Ghadder et al., the instability mode for the grooved channel very closely

resembles a traveling Tollmien–Schlichting wave particularly in the �ow structure and the
dispersive relation between the frequency and the wave number �=2�n=L, where n is the
number of waves that spans the periodicity length L. In the present study, the frequencies of
O1 and O2 at the criticality are 0.1314 and 0.09416 as shown in Table II. On the other hand,
those of the Tollmien–Schlichting wave in the parallel plate channel which correspond to the
critical Reynolds numbers of O1 and O2 are 0.1346 and 0.09090, respectively. Therefore, we
can consider that the disturbance mode of O2 is the Tollmien–Schlichting mode as well as
that of O1, although they are somewhat modi�ed due to the need for adaptation to a more
complex geometry than that of the parallel-plate channel. Similar self-sustained oscillatory
�ows at Tollmien–Schlichting frequencies were found in other modi�ed channel geometries
such as in channels with cylindrical promoters [19] and communicating channels [20].
It is found that the Hopf bifurcation occurs at a small Reynolds number for a periodically

grooved channel compared with the fact that the plane Poiseuille �ow is destabilized by the
Tollmien–Schlichting wave for Re¿5772 [21]. This is mainly because the Kelvin–Helmholtz
instability, which is established at the groove lip due to the formation of in�ections in the
passage velocity pro�le, forces the normally damped Tollmien–Schlichting wave of the outer
grooves and projects energy onto it. As a result of complex interaction, it results in two-
dimensional traveling waves at moderately low Reynolds numbers.

5. CONCLUSIONS

A stability analysis based on the linear theory has been performed for the �ow in a channel
with periodically grooved parts. From the steady-state and disturbance equations, the gener-
alized eigenvalue problem has been constituted by successfully applying the linear stability
theory to the complex �ow.
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The critical Reynolds numbers and frequencies for the onset of self-sustained oscillations
have been obtained for both m=1 and 2. It is found that the critical Reynolds number is
obtained for the oscillatory mode of m=2 instead of m=1. This is a main conclusion di�erent
from the previous results, because the previous stability analyses by numerical simulation
considered only m=1. The result obtained here implies that the period of the self-sustained
oscillatory �ow after the bifurcation becomes the double in the channel period. It is expected
that a signi�cant e�ect might be generated in characteristics of heat transfer, pressure loss and
other hydrodynamic properties after the bifurcation depending on whether m is 1 or 2. This
can be clari�ed by the numerical simulation of the time-dependent Navier–Stokes equations.
Finally, the unstable modes of �ow in grooved channels are greatly dependent on their

shape. It cannot be expected which mode gives the critical mode in advance. Therefore, it
is necessary for another calculation about each m¿3, which has not been considered in this
study. This is a future problem.

NOMENCLATURE

a height of groove from the centerline
h∗ half-height of the parallel plane channel
L period of the module
l length of groove
p pressure
Re Reynolds number, Re=U ∗h∗=�∗

U ∗
m mean velocity at the cross section of height 2h∗

U ∗ representative velocity, U ∗=3U ∗
m=2

u; v velocity components in x− and y− directions, respectively
u velocity vector

Greek symbols

� pressure gradient
� penalty number
�∗ kinematic viscosity
�∗ density
� frequency
� eigenvalue �=�r + 2��i

Subscripts

c critical
p plane Poiseuille �ow

Superscript

∗ dimensional value
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